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Abstract

The fundamental problem of elastic–plastic normally loaded contact between a deformable sphere and a rigid flat is
analyzed under perfect slip and full stick conditions for a wide range of the sphere mechanical properties. The effect of
these properties on failure inception is investigated by finding the critical interference and normal loading as well as the
location of the first plastic yield or brittle failure. The analysis is based on the analytical Hertz solution under friction-
less slip condition and on a numerical solution under stick condition. The failure inception is determined by using either
the von Mises criterion of plastic yield or the maximum tensile stress criterion of brittle failure. For small values of the
Poisson�s ratio the behavior in stick, when high tangential stresses prevail in the contact interface, is much different than
in slip. For high values of the Poisson�s ratio the tangential stresses under stick condition are low and the behavior of
the failure inception in stick and slip is similar.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The contact of a sphere and a flat is a fundamental problem in contact mechanics with important scien-
tific and technological aspects. The subject of normally loaded spherical contact stems from the classical
work of Hertz in 1881 who derived an analytical solution for the frictionless (i.e., perfect slip) contact of
two elastic spheres, (see Johnson, 1985). The stress field associated with elastic spherical contact was calcu-
lated in detail by Huber in 1904 (see Fischer-Cripps, 2000). The Hertz model of a perfect slip contact may
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Nomenclature

a contact area radius
Cm pmc/Y
E Young�s modulus of the sphere
F failure tensile strength of the sphere material
L load in stick
p contact pressure
pm maximum contact pressure
P load in slip
R radius of the sphere
r,h,z cylindrical coordinates
Y yield strength of the sphere material
z0 location of yielding inception
d interference in stick
m Poisson�s ratio of the sphere
rr radial stress
r1, r2, r3 principal stresses
rh circumferential stress
rz normal stress in the load direction
req von Mises equivalent stress
rþmax maximum tensile stress
srz tangential stress
x interference in slip
f0 dimensionless yielding inception depth, z0/a
f�0 yielding inception depth ratio

Subscripts

c critical value at yield inception
cf critical value at brittle failure inception
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also be valid in certain cases of frictional contact. If, for instance, two identical spheres come to a normal
contact, their corresponding radial displacements at the interface are identical thus, preventing any tangen-
tial stresses there (see Johnson, 1985). Therefore, a normal contact of two identical spheres in stick can be
modeled by a perfect slip (frictionless) contact between them or between a deformable sphere and a rigid
flat. This idea was used extensively in modeling spherical contact under combined normal and tangential
loading (for example, Mindlin, 1949; Bryant and Keer, 1982; Hamilton, 1983; Chang et al., 1988; Kogut
and Etsion, 2003). In all of these works the contact is assumed in perfect slip during the normal loading
but since the tangential loading can not be supported by such perfect slip the contact condition must change
prior to applying the tangential load. This is done either by assuming a certain friction coefficient and a
local Coulomb friction law (Mindlin, 1949; Bryant and Keer, 1982; Hamilton, 1983; Zhang et al., 2003)
or by some mixed slip/stick conditions (Chang et al., 1988; Kogut and Etsion, 2003) for analyzing sliding
inception based on the von Mises criterion of plastic yield.

Since a realistic contact of a sphere and flat may be far from the ideal assumption of perfect slip, and
since the end of elasticity of brittle materials is different from that of ductile ones it seems appropriate
to analyze this contact problem under stick condition for different material properties, and to compare
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the results with the idealized solutions of perfect slip. We shall begin by reviewing the existing literature for
both slip and stick contact conditions of the relevant contact problem.

Chang (1986) (see also Chang et al., 1988) solved the problem of yield inception of a spherical contact in
the case of perfect slip using the stress field of Huber and the von Mises yield criterion. He calculated the
critical interference at the inception of plastic deformation as a function of the mechanical properties and
the radius of the sphere. Chang also presented the location of the first yield inside the sphere as a function
of the Poisson�s ratio. The evolution of an elastic–plastic contact between a sphere and a rigid flat with
increasing interference under perfect slip condition was studied numerically by Kogut and Etsion (2002)
and then by Jackson and Green (2005), who introduced an empirical equation for the critical interference
at the inception of yield, somewhat different than this given by Chang (1986) and Chang et al. (1988).
Etsion et al. (2005) studied the process of loading–unloading of an elastic–plastic loaded sphere in contact
with a rigid flat under perfect slip condition. They calculated the contact load, stresses and deformations in
the sphere during both loading and unloading, for a wide range of interferences and a variety of ductile
material properties. The conditions required to initiate a brittle material failure of a spherical contact under
perfect slip were studied by Fischer-Cripps (1997) and this subject is well described in Fischer-Cripps
(2000).

The first analytical solution of the spherical contact problem under full stick condition is by
Goodman (1962). Goodman found a simplified solution for the tangential stress distribution over the
contact area of two dissimilar elastic spheres in normal contact in stick. The effect of these tangential
stresses on the normal displacements was neglected, so that the pressure distribution over the contact
area was assumed to be Hertzian. A more exact analysis under full stick contact condition was made
by Spence (1968) who solved simultaneously the dual integral equations for shear stresses and pressure
distribution over the contact area and calculated the total compressive load. It follows from Spence
results that for small values of the Poisson�s ratio the influence of shear stresses on the contact load
is appreciable. Spence (1975) extended his previous analysis to the case of partial stick using a certain
value of friction coefficient. More recently Zhupanska and Ulitko (2005) used a similar approach to
solve the contact problem of a rigid cylinder indenting an elastic half-space. The cases of contact with
a finite friction, and more specifically with full stick condition were considered. Johnson et al. (1973)
extended the solution by Goodman (1962), and found the radial stress distribution on the surface of
the sphere both inside and outside the contact interface. They solved the problem for the maximum ten-
sile stress which causes fracture of brittle materials. Another extension of the Goodman�s solution is by
Hills and Sackfield (1987) that gave a complete picture of the stress distribution assuming full and par-
tial stick contact conditions. Kosior et al. (1999) analyzed an elastic spherical contact under partial slip
condition (with a finite Coulomb friction) using a domain decomposition method coupled with bound-
ary element method. They calculated the stress distribution, the contact radius and the displacement as
functions of the sphere�s mechanical properties. Their results were in good agreement with the analytical
solution of Spence (1975).

An extensive review of the literature on spherical and cylindrical contacts under normal load with and
without friction was made by Adams and Nosonovsky (2000) including the subject of yielding inception
of normally loaded spherical contact. It can be seen from this review, as well as from the above intro-
duction, that most of the existing literature on elasticity terminus of spherical contact concern ductile
materials and perfect slip contact condition. Very little work was done so far on the more realistic case
of spherical contact under stick condition, and the few published solutions are either approximate or
very complicated. An accurate analysis that predicts failure inception under full stick condition is still
missing.

The main goal of this paper is to fill this knowledge gap and analyze and compare the ductile material
yielding inception and the brittle material failure inception for the two different contact conditions (full
stick or perfect slip) between a smooth elastic sphere and rigid flat.
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2. The spherical contact model

Fig. 1 presents a deformable sphere in contact with a rigid flat. The solid and dashed lines show the con-
tours of the contacting bodies after and before the loading, respectively. The interference, x and contact
area with a radius a (see Fig. 1), correspond to a contact load P. Both x and a are assumed to be much
smaller than the sphere radius R.

The material of the sphere is assumed to be isotropic and elastic until the first yield or failure is reached.
Ductile and brittle models of behavior are considered separately.

Since the problem is axisymmetric, it is sufficient to consider only half of the axisymmetric hemisphere
section, as shown in Fig. 1. The boundary conditions consist of constrain in the vertical and radial direc-
tions at the bottom of the hemisphere and in the radial direction at the axis of symmetry (see Fig. 1). The
surface of the sphere is free elsewhere except for tractions imposed by the contacting rigid flat.

Two different types of the contact conditions are considered: perfect slip and full stick. The former case
assumes no tangential stresses in the contact area. The condition of full stick implies that contacting points
of the sphere and the flat (which initially lied outside the contact area and were free to acquire a relative
displacement) that are overtaken by the expanding contact zone, are prevented from further relative dis-
placement (see Johnson et al., 1973).
3. Analytical solution for perfect slip condition

The Hertz solution (see Johnson, 1985) provides the following expressions for the contact load, P, and
the contact radius, a:
P ¼ 4

3

ER1=2x3=2

ð1� m2Þ ð1Þ

a ¼
ffiffiffiffiffiffiffi
xR
p

ð2Þ
where E and m are the Young modulus and the Poisson�s ratio of the sphere material, respectively.
The assumed parabolic distribution of the contact pressure according to Hertz is
pðrÞ ¼ pm

a
ða2 � r2Þ1=2 ð3Þ
where r is a radial distance measured from the center of the contact area, and pm, the maximum contact
pressure at the center of the contact, which is given by
  a 

P

  ω

R

Fig. 1. A deformable sphere in contact with a rigid flat before and after loading.
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pm ¼
3P

2pa2
ð4Þ
The stress field along the z-axis (normal to the contact area at its center) may be written in the form (see
Johnson, 1985)
rr

pm

¼ �ð1þ mÞ 1� z
a

tan�1ða=zÞ
� �h i

þ 1

2
1þ z2

a2

� ��1

rh ¼ rr

rz

pm

¼ � 1þ z2

a2

� ��1

srz ¼ srh ¼ szh ¼ 0

ð5Þ
where rr, rh and rz are the normal stresses in radial, circumferential and vertical directions, respectively. srz,
srh and szh are the corresponding shear stresses that vanish along the z-axis.

3.1. Yielding inception of ductile materials (0.2 6 m 6 0.5)

The von Mises yield criterion is used to study the inception of plastic deformation for the case of ductile
materials where the Poisson�s ratio varies in the range 0.2 6 m 6 0.5. This criterion can be expressed as (see
for example Fischer-Cripps, 2000)
Y ¼ req ¼
1

2
ðr1 � r2Þ2 þ ðr2 � r3Þ2 þ ðr1 � r3Þ2
h i� �1=2

ð6Þ
where r1, r2 and r3 are the principal stresses, req is the equivalent von Mises stress and Y is the yield
strength of the sphere material. It can be easily seen that for the stress field given in Eq. (5), the coordinate
axes are the principal directions. Hence, using Eq. (5), the equivalent von Mises stress at any location on the
z axis can be expressed as follows:
req ¼ rr � rz ¼ pm

3

2
1þ z2

a2

� ��1

� ð1þ mÞ 1� z
a

tan�1ða=zÞ
� �h i( )

ð7Þ
Differentiating Eq. (7) with respect to the ratio z/a and equating to zero yields the dimensionless location,
f0 = z0/a, of the maximum equivalent stress in the form
ð1þ mÞ tan�1ð1=f0Þ �
f0

1þ f2
0

" #
� 3f0

ð1þ f2
0Þ

2
¼ 0 ð8Þ
This location, in accordance with Eq. (6) marks the inception of yield. Eq. (8) can be rewritten as
m ¼ 3f0

ð1þ f2
0Þ

2
tan�1ð1=f0Þ �

f0

1þ f2
0

" #�1

� 1 ð9Þ
Expanding the right-hand side of Eq. (9) to a Taylor series around the value f0 = 0.5, which corresponds to
the dimensionless yielding inception depth for a typical ductile material with Poisson�s ratio of about 0.3
(see Johnson, 1985), we obtain
m ¼ 0:3576þ 3:000ðf0 � 0:5Þ � 0:4448ðf0 � 0:5Þ2 þ � � � ð10Þ
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From the first two terms in Eq. (10), an approximate linear relation between the dimensionless yielding
inception depth and the Poisson�s ratio is obtained in the form
f0 ¼ 0:381þ m=3 ð11Þ

The error introduced by Eq. (11) was calculated from the remainder of the two first terms in the Taylor
series of Eq. (10) and found to be less than 0.081%.

From Eq. (11) it can be seen that f0 increases with m and hence, higher ductility results in yield inception
on the axis of symmetry, deeper below the contact area.

Substituting f0 for z/a in Eq. (7) and using Eqs. (1) and (4), we obtain the critical interference, xc, at yield
inception in the form
xc ¼ Cm
pð1� m2Þ

2

Y
E

� �	 
2

R ð12Þ
where Cm is a function of the Poisson�s ratio in the form
Cm ¼
3

2
ð1þ f2

0Þ
�1 � ð1þ mÞ 1� f0tan�1 1

f0

� �	 
� ��1

ð13Þ
Using Eq. (11) for f0 in Eq. (13) and expanding the right-hand side of Eq. (13) to a Taylor series around the
value m = 0.35, which is the mean value of the Poisson�s ratio in the range 0.2 6 m 6 0.5, gives
Cm ¼ 1:674þ 1:256ðm� 0:35Þ þ 0:611ðm� 0:35Þ2 þ � � � ð14Þ

Finally, the first two terms in Eq. (14) yield an approximate linear relation in the form
Cm ¼ 1:234þ 1:256m ð15Þ

The error introduced by Eq. (15) was calculated from the remainder of the two first terms in the Taylor
series of Eq. (14) and found to be less than 1.18%. Eq. (15) which was derived here analytically gives very
close results to the analogous numerical approximations: Cm = 1.297 + 1.17m that was obtained by Chang
(1986) (see also K in Chang et al., 1988) for H = Y/0.35, and Cm = 1.295 exp(0.736m) which is given by Jack-
son and Green (2005).

Using Eq. (12) for xc in Eq. (1), the critical load at yield inception is
P c ¼
p3

6
C3

mY Rð1� m2Þ Y
E

� �2

ð16Þ
The maximum contact pressure at yielding inception, pmc, can be found by substituting x = xc in Eqs. (1)
and (2) and using them together with Eq. (12) in Eq. (4), hence
pmc ¼ CmY ð17Þ

Eq. (17) provides an interesting and useful physical meaning of the dimensionless parameter Cm. As can be
seen this parameter is simply the ratio of the critical maximum contact pressure at yield inception (which is
the maximum compressive stress occurring anywhere) over the yield strength of the sphere material.

3.2. Failure inception of brittle materials (0 6 m 6 0.25)

The failure inception of brittle materials occurs when the maximum tensile stress reaches the failure
strength of the material (the maximum tensile stress criterion, see for example Johnson et al., 1973). In
the case of perfect slip, all the stress components are compressive except the radial stress on the sphere sur-
face which at the very edge and outside of the contact is tensile. The distribution of this radial stress on the
sphere surface, inside and outside the contact area, has the form (see Johnson, 1985)
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rr ¼ pm

1� 2m
3
ða2=r2Þ½1� ð1� r2=a2Þ3=2� � ð1� r2=a2Þ1=2

� �
; r 6 a

rr ¼ pmð1� 2mÞa2=3r2; r > a
ð18aÞ
with a maximum value at r = a (which is the largest tensile stress anywhere)
rþmax ¼ rrjr¼a ¼
pmð1� 2mÞ

3
ð18bÞ
This stress is responsible for the formation of ring cracks which are observed when brittle materials, like
glass, are pressed into contact (see e.g., Johnson, 1985; Johnson et al., 1973).

Substituting the value of pm from Eq. (4) into Eq. (18b) and using Eq. (1), we can express the critical
interference xcf at brittle failure inception, in the case of perfect slip
xcf ¼
F
E

� �2
3pð1� m2Þ
2ð1� 2mÞ

	 
2

R ð19Þ
where F is the failure tensile strength of the sphere material.
The critical load at the inception of brittle failure is obtained by using xcf in Eq. (1), thus
P cf ¼
9p3F

2ð1� 2mÞ R
1� m2

1� 2m

� �
F
E

	 
2

ð20Þ
4. The finite elements model for full stick condition

The available analytical solutions of the spherical contact problem under full stick condition are either
approximate (see Goodman, 1962; Johnson et al., 1973; Hills and Sackfield, 1987), or cumbersome and
incomplete (see Spence, 1968). To alleviate this drawback a finite element numerical solution, using a com-
mercial package ANSYS 8.0, was employed.

The model is shown schematically in Fig. 2. For ductile materials the finite element mesh consisted of
9081 six-node triangular elements comprising a total of 29,277 nodes. The sphere was divided into three
different mesh density zones (see Fig. 2(a)), where zones III and II were within 0.015R and 0.1R, respec-
tively, from the sphere summit, and zone I outside the 0.1R distance. Zone III had the finest mesh and
I

III

II

I  

II 

IV 
III

III

IV 

(a) (b)

Fig. 2. The finite elements model: (a) for a ductile material and (b) for a brittle material.
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it covered the whole contact area as well as the location of the first yield for all the solved cases. The other
zones had gradual coarser mesh at increasing distance from the sphere summit.

Ductile materials with different mechanical properties were analyzed to study their effect on the yield
inception. The ratio E/Y covered a wide range from 200 to 1000, typical for metals. The Poisson�s ratio
m varied in the range from 0.2 to 0.5, typical for ductile materials. The von Mises yielding criterion was used
to detect the onset of plastic deformation. The interference d was gradually increased and the equivalent
von Mises stress req at each node was checked against the material yield strength Y. The interference
d = dc is the smallest one at which req = Y at least in one node and this case corresponds to the yield incep-
tion in stick. It provides all the critical values like the critical interference, dc, critical load, Lc, the radius of
the contact area ac, and the location of the yield inception.

For brittle materials zone III was subdivided so that a very thin layer (see zone IV in Fig. 2) was added at
a very close proximity to the contact area. This zone had the finest mesh, its thickness was 7.5 Æ 10�4R and it
had a width of 0.01R so that it contained the location of the first failure inception on the contact area. The
whole mesh for brittle materials consisted of 10,412 six-node triangular elements comprising 31,322 nodes.

The Poisson�s ratio, m, for brittle materials varied in the range from 0 to 0.25 and the ratio E/F covered
the range from 4000 to 16,000. The maximum tensile stress criterion was used to detect the onset of brittle
failure. This was done with an identical procedure as for ductile materials and provided the critical values
for brittle failure inception i.e., dcf, Lcf, acf, and the location of the brittle failure inception.
5. Results and discussion

Firstly, it was found that for both ductile and brittle materials the contact conditions have a very small
effect on the radius of the contact area, a, i.e., its value in full stick can be fairly evaluated by Eq. (2), with d
instead of x.

5.1. Ductile materials (0.2 6 m 6 0.5)

As will be shown later (see discussion of Fig. 8) the critical interference in stick can be related to that in
slip by dc 6 xc. Hence, for the interference x = dc, Eqs. (1)–(4) are valid under slip condition. This allows
comparing behavior at yield inception in stick with that at identical interference in slip. The distribution
over the contact area of the dimensionless pressure, p/Y, and tangential stress srz/Y at the inception of yield
in stick, dc, are shown in Figs. 3 and 4, respectively for ductile materials for m = 0.2, 0.3,0.4. The solid and
dashed lines in Fig. 3 correspond to the cases of full stick and perfect slip, respectively. The results for the
full stick were obtained by the numerical method described above while the pressure distribution for the
perfect slip was obtained analytically from Eqs. (1) to (4) with x = dc. As shown in Fig. 3 the pressure level,
and hence the critical load Lc, decreases with decreasing m. Also at a small value of the Poisson�s ratio
(m = 0.2) the pressure distribution in stick is appreciably different than in slip for the same interference
x = dc. This is because of high tangential stresses in the contact surface under the stick condition (see
Fig. 4 at m = 0.2). At higher values of the Poisson�s ratio the tangential stresses in the contact interface
in stick are much lower than the corresponding pressure (see Figs. 3 and 4 at m = 0.4) and therefore the
pressure distributions in stick and in slip are similar (see Fig. 3 at m = 0.4).

Fig. 5 presents the distribution over the contact area of the dimensionless equivalent von Mises stress
req/Y at yield inception in stick. As can be seen the equivalent stress has two maxima, the lower one close
to the edge of the contact area at r/a � 0.9 results from the high tangential stresses there (see Fig. 4) while
the absolute maximum occurs at r/a = 0 for the full range of the Poisson�s ratio. From the location of the
absolute maximum of req it is clear that the yield inception of ductile materials in either full stick or perfect
slip contact always occurs on the axis of symmetry.
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Fig. 6 presents the distribution along the axis of symmetry of the dimensionless equivalent von Mises
stress req/Y at yield inception in stick. As can be seen from the figure the maximum value, req/Y = 1
and hence, the location of yield inception, occurs closer to the contact with decreasing values of the
Poisson�s ratio. For m = 0.4 and 0.3 the location of this maximum beneath the contact is at z/a = 0.45
and z/a = 0.3, respectively while for m = 0.2 the yield inception in stick is at the contact area (z/a = 0).

A comparison between the dimensionless locations of yielding inception, f0, as a function of the
Poisson�s ratio in stick (d = dc) and in slip (x = xc) is presented in Fig. 7. The linear behavior in slip is
according with Eq. (11) and the results in stick are those obtained from the numerical solution where
the yield inception location is identified as was shown in Fig. 6. From Fig. 7 it can be seen that for
m 6 0.26 the yield inception in stick occurs at the contact surface, while in slip it always occurs beneath
the contact surface. As m increases the yielding inception depth f0 in stick grows faster than that in slip,
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approaching the later and finally for m = 0.5 becoming identical to it. The ratio, f�0, of yielding inception
depth in stick over that in slip is well approximated by the following function of the Poisson�s ratio:
Fig. 8.
perfec
f�0 ¼ 0; m 6 0:26

f�0 ¼ 1:54ðm� 0:26Þ0:294
; 0:26 < m 6 0:5

ð21Þ
Fig. 8 presents the ratios of the critical interference (dc/xc) and critical load (Lc/Pc) for yielding inception
in full stick over that in perfect slip. These ratios were calculated for the wide range of E/Y values from 200
to 1000 and found to be independent of the material properties except for the Poisson�s ratio. For small
values of m, the critical interference and the critical load in stick are considerably less than the same param-
eters in slip. This is because of high tangential stresses in the contact interface under stick that are non exis-
tent under slip condition. For high values of the Poisson�s ratio the tangential stresses under stick condition
are low enough to make the critical interference and critical load in stick and in slip similar. The ratios of
the critical interference and critical load are well approximated by the following functions of m in the range
0.2 6 m 6 0.5:
dc=xc ¼ 6:82m� 7:83ðm2 þ 0:0586Þ ð22Þ
Lc=P c ¼ 8:88m� 10:13ðm2 þ 0:089Þ ð23Þ
5.2. Brittle materials (0.1 6 m 6 0.25)

In analyzing the failure inception for brittle materials it was found that dcf� xcf namely, the failure
inception in stick occurs at a much higher interference than in slip. This finding is in agreement with the
results reported by Johnson et al. (1973) for a sphere contacting a rigid flat, and it shows a behavior that
is completely different from that in the previous ductile material case where dc 6 xc. To demonstrate this
behavior we show in Fig. 9 the distributions over the sphere surface (both inside and outside the contact
area) of the dimensionless radial stress, rr/F, in both stick and slip. The results are shown for m = 0.1
and for the same interference d = xcf. The critical interference in slip, xcf, and the corresponding distribu-
tion, rr/F, were obtained from Eqs. (19) and (18a), respectively. As can be seen from Fig. 9 the dangerous
tensile portion of rr/F is much higher in slip than in stick. Another important observation is that the max-
imum value of rr/F, and hence the failure inception in stick occurs outside the contact area while that in slip
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always occurs at the edge of the contact area r/a = 1. Similar results were obtained for other m values show-
ing that in stick the failure inception slightly moves from r/a = 1.49 to r/a = 1.56 as m increases from 0.1 to
0.25. The failure inception in slip always occurs at the edge of the contact area r/a = 1, see Eq. (18b). The
lower level of rr/F in stick compared to that in slip outside the contact area, as shown in Fig. 9 for r/a > 1, is
probably due to the constraint imposed on the radial displacement of points on the sphere surface as they
engage the rigid flat. This result is in agreement with the approximate solution and explanation provided by
Johnson et al. (1973).

The critical interference for brittle failure inception in stick, dcf, and the critical load Lcf were obtained
for a wide range of material properties in terms of the ratio E/F as described in Section 4 above. It was
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found that, like the ratios of the critical interference, dc/xc, and critical load, LcPc, for yielding inception
(see Fig. 8), the analogous ratios for brittle failure inception in stick over that in slip, dcf/xcf and Lcf/Pcf are
also independent of the material properties except for the Poisson�s ratio. Fig. 10 presents the ratios of the
critical interference dcf/xcf and critical load Lcf/Pcf as functions of m. It can be seen that for brittle materials
the critical interference and load in stick are much larger than in slip. In the range m = 0.1–0.25 the ratio
dcf/xcf varies from 20 to 30 while the ratio Lcf/Pcf varies from 90 to 165.

Finally an interesting observation for both ductile and brittle materials is that the ratio L/P is very well
related to d/x by L/P = (d/x)3/2 throughout the elastic contact regime. Hence, the load–interference behav-
ior in stick is similar to that in slip (see Eq. (1)).
6. Conclusion

We studied the effect of contact condition and material properties on the termination of elasticity in
spherical contact by comparing plastic yield and brittle failure inceptions in stick and slip.

With ductile materials the yield inception always occurs at a single point on the axis of symmetry. At
smaller values of the Poisson�s ratio the behavior in stick is much different than in slip because of high tan-
gential stresses in the contact interface under the stick condition. As a result the values of critical interfer-
ence, critical load, and yielding inception depth in stick are lower than their corresponding values in slip. At
higher values of the Poisson�s ratio the tangential stresses under stick condition are low and the yield incep-
tions in stick and slip are similar.

With brittle materials the failure inception always occurs on the circumference of a circle on the sphere
surface. The values of critical interference, critical load, and radial location of failure inception in stick are
larger than their corresponding values in slip, contrary to the behavior of ductile materials. In slip the fail-
ure incepts at the edge of the contact area while in stick this happens outside the contact area. For both
ductile and brittle materials the ratios of critical interference and critical load in full stick over that in per-
fect slip depend solely on the Poisson�s ratio and can be presented as simple expressions of this parameter.
Also, the load–interference behavior in stick is similar to that in slip in that the load is proportional to a 3/2
power of the interference.
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